QGIS for Hydro – Second Edition

We are excited to announce our first updated work for 2022!

QGIS for Hydrological Applications – Second Edition is now available as an e-book. Built on the latest improvements from QGIS 3.22+ it also has 10% more pages and various improved workflows and recipes.

Save $10 (28%) this month by using e-book coupon code: WATERISLIFE when adding it to your cart.
Print versions of the updated book are coming later this month. Subscribe to our newsletter to be the first to hear of new books and projects.

Read more on the book’s store page, including a comprehensive table of contents and overview of new features.

How to use Jupyter Notebooks for your Geospatial Workflows

Combined with the Python scripting and programming language, Jupyter Notebooks have become an indispensable tool for GIS analysts to extend their desktop GIS environment. This article describes how to use Jupyter Notebooks for Python, which popular Python packages are available for doing geospatial analysis and how to get started with Jupyter Notebooks inside a desktop GIS application.

Challenges of GIS software for doing geospatial data analysis

Today, geospatial data analysis is embedded within the larger discipline of data science that surpasses the traditional way that spatial analysis would be done. With more data, tools and approaches to interact with data, today’s GIS analyst requires a larger toolset to perform location intelligence and use data to solve a (spatial) problem.

While GIS technology offers many great tools for doing geospatial data analysis, it also has various shortcomings in today’s context of data science workflows. GIS software is still very much centered around making maps from data, which makes it easy to forget how that data is managed and analyzed before it is being presented through a map. And while GIS software is improved continuously over time with new tools to manage and analyze and present data, new tools, methods and practices are being developed everyday, which is much more than can be included in a single GIS application.

Related to this is that GIS software (or any data analysis software for that matter) comes with its own tools, practices, interfaces and related learning curve. One application may be good for one thing, but as a user you’d want to be flexible and combine best practices of multiple applications into one. Such an application faces the user with a closed environment where you are at the mercy of the application developers and their decisions on what to include in the software or not.

Application developers decide which data you can and cannot import. The data you need for your GIS analysis has to be brought into the software from the outside into the application. This has always been a challenge for GIS applications, where data format support was an issue until industry standards were developed.

However, a different problem occurred when big datasets became the norm, meaning that GIS analysts needed to process large spatial datasets locally, a task that desktop GIS was never designed for. While customized solutions were introduced over time, these did not prove to be the best approach as database technology transitioned from server-based to cloud-native solutions and market demands changed continuously.

Today, datasets are continuously being updated and are being stored, pre-processed and accessed remotely in a cloud or server environment as it is simply impossible to manage these locally. Over time, GIS application developers understood it was better to change their approach and instead of trying to integrate every possible new third-party solution into their own application, choose for an existing and proven approach that had already proved its worth in the 1980s: scripting languages, in combination with a new interactive web tool.

Geospatial Analysis + Python + Jupyter Notebooks

In the 1980s, scripting languages proved to be a handy way to automate GIS workflows. Instead of doing manual “button-pushing” operations in a GIS environment, a GIS analyst would write a script that would perform these actions when running the script in a code editor. This would not only save a lot of time and effort, it also reduced the possibility of human errors. Analytical GIS workflows lend themselve very well for this type of workflow automation, as they apply spatial algorithms to a geographical dataset on disk. For cartographic map production workflows, such an approach would not work as human interaction with a mapping interface is required.

After the introduction of the Python language for automating GIS workflows around 2004, it quickly became popular among GIS users. The Python language itself became hugely popular among the data science community, resulting in a very large ecosystem of freely available libraries for everyone to use. The GIS community was quick to realize its potential and adopted Python as the language to tap into this ecosystem and extend existing desktop GIS tools. However, what was lacking at the time was an easy-to-use tool that could replace a code editor as a working environment, or the primitive Python single-line editor inside a GIS application.

Python scripting in the QGIS Python console
Figure 1: Python scripting in the QGIS Python console

Today, the Jupyter Python Notebook is the to-go tool for GIS analysts who want to use Python to do anything from data management, to prototyping, spatial analysis, big data analytics, data visualization, among other things. Jupyter Notebooks are browser-based documents that combine code, annotations, explanations as well as links to online media. You can write, run and code there as with a code editor, but divided into individual cells instead of entire scripts. Jupyter Notebooks were an extension of scientific computational notebooks and became the de facto standard quickly after their introduction, for a large part because they provide remote access to data that might otherwise be impractical to download.

What makes Jupyter Notebooks more versatile than local programming scripts is that they can use both a local and remote backend to run code from the browser-based Notebooks. This means that you can create a Notebook from your local computer, that is run somewhere else, be it a supercomputer with a huge capacity or in the cloud, so you’re no longer dependent on your local computer’s resources for big data processing. This also takes away the necessity to download data locally and process it there.

Another benefit from Jupyter Notebooks is that you easily integrate existing Notebooks into your own workflows or collaborate with others: sharing a Notebook with others also includes the tool results (such as the output of a function), which is different from using single scripts that are run in an IDE where results are printed or returned in a console.

Python packages for geospatial analysis

Currently, there are many geospatial Python packages available that offer everything from geospatial data management to mapping capabilities inside a Jupyter Notebook. A LinkedIn post from Matt Forest from CARTO from August last year mentioned the most popular Python geospatial libraries, based on total PyPI downloads:

  • Shapely (89M): for manipulation and analysis of planar features;
  • geopy (83M): a Python client for several popular geocoding web services;
  • pyproj (48M):  performs cartographic transformations and geodetic computations;
  • Fiona (25M): for reading and writing vector data;
  • GeoPandas (18M): spatial data processing, based on pandas data objects;
  • Descartes (10.8M): enables the use of geometric objects as matplotlib paths and patches;
  • Folium (9.8M): visualizes data on an interactive Leaflet map;
  • Rasterio (9.3M): GDAL and NumPy-based library for raster data;
  • GDAL (2.8M): supports reading and writing capabilities for both vectors and rasters;
  • pysal (1.3M): for open source, cross-platform geospatial data science;
  • OSMnx (932K): download geospatial data from OpenStreetMap and model, project, visualize, and analyze real-world street networks and any other geospatial geometries;
  • ipyleaflet (922K): for creating interactive maps in the Jupyter notebook;
  • CartoPy (834K): designed for geospatial data processing in order to produce maps and other geospatial data analyses;
  • CARTOframes (583K): enables integration of CARTO maps, analysis and data services;
  • keplergl (410K): a web-based application for visual exploration of large-scale geolocation data sets;
  • GeoPlot (132K): a high-level Python geospatial plotting library.

If you’re not already using these tools as a GIS analyst or geospatial developer, it’s good to know that your skills determine your value to a company/client, and these tools will help give you an edge over the competition and keep you delivering innovative results into the future. To start using such packages, you can download the Anaconda distribution of Python, which includes the Jupyter Notebooks application as well. Anaconda includes conda, which lets you create a virtual environment for each Notebook, so you don’t have to worry about possible dependency conflicts between projects. Also, this separates the Notebooks (coding environments) from the package management environment (conda). Packages can be downloaded directly from conda, which comes with a default pip package installer for every new environment.

Jupyter Notebook functionality inside desktop GIS

To start using the Jupyter Notebook application inside a desktop GIS, note that the application is renamed ArcGIS Notebook inside ArcGIS Pro and comes with a default installation. QGIS users need to install the IPython QGIS Console plugin, which gives you access to the IPython Console inside of QGIS. The IPython Console allows you to execute commands and interact with data inside IPython interpreters.

This plugin requires you have the qtconsole Python package and the Jupyter Notebook installation installed. After installing the IPython QGIS Console plugin from the QGIS Plugin dropdown menu, you need to run two separate commands from the OSGeo4W shell as an administrator, which is explained in detail here. After this, you’ll find the IPython QGIS Console plugin listed under the installed plugin. Selecting it will open the QGIS IPython console, which gives you access to canvas, iface, app (QGIS application) objects and all qgis and PyQt core and gui modules directly from the shell.

Using the QGIS IPython Console
Figure 2: Using the QGIS IPython Console


Right after its introduction, Jupyter Notebooks have become an indispensable tool for GIS analysts to extend their desktop GIS environment thanks to the Python programming and scripting language. We explained how to use both Jupyter Notebooks with the Python language, and covered the most popular geospatial Python packages, and how to start using the IPython console inside QGIS and the ArcGIS Notebook application inside ArcGIS Pro. 

Python & Geospatial Resources

March GIS Book Sale & New Book Teaser

This post provides a 20% off coupon for all our e-books, introduces one of our upcoming new titles, and shares the various ways you can engage with us and the geospatial community at large.

Choose from any of our e-books and save 20% through March. Learn about QGIS, enhance your cartography skills, or build a geospatial application.

Use coupon code: MARCH20 when adding to cart, add any titles you want.

Bonus: Select customized offers anytime during checkout, some deals are over 50% off. 

Geemap and Earth Engine – Coming Soon!

We are thrilled to tease you with this upcoming book, by popular educator and researcher Qiusheng Wu.

Learn more about his new book focused on Earth Engine and cloud-based geospatial analytics.

Sign up to our newsletter to be notified when it is available.

Meet our authors

We now have a dozen active authors, with more coming soon. 

Check out our new Authors Page to learn about their work, their latest books, and how to connect with and follow their social media accounts.

Locate Press Authors Page

Printed book discounts

You can save on more than just e-books.
Avoid buying through Amazon or a distributor by emailing us to get direct access to 20%+ discounts on bulk purchases of only five or more books.

Educators and libraries – we are here to support you and your students. Contact us to discuss adding a book to your LMS or course.

Contact us to place an order

Joining as a QGIS Sustaining Member

Locate Press has helped support the QGIS project, in spirit, for many years with most of our book titles dedicated to learning it. Our former publisher, Gary Sherman, started QGIS twenty years ago, and several of our authors serve as trainers or board members for different QGIS chapters.

Today we take one step further with direct financial support of QGIS as a Sustaining Member (small level).

Rather than just take donations and gives commercial benefits, the project has an interesting goal of recurring supporters through this membership program to help create ongoing contributions – it’s a good idea and thinking outside of the box is needed for long term sustainability.

If you are using QGIS in your work or business, please also become a member (see this link) and join us in furthering the cause of equal access to GIS technology by using open source development. Can’t afford a membership? An annual donation of any amount is also available. Below, I’ve copied some of the description of how the funds will be used.

From QGIS.org sustaining membership page:

“With your financial contributions we are able to:

  • keep the QGIS.ORG IT infrastructure up and running. This includes aspects, such as
    • the QGIS.ORG website
    • our issue (bug and feature reporting) system
    • the continuous integration system that tests each change or pull request against a series of automated unit tests
    • our documentation and API documentation system
  • packaging QGIS for the various operating systems
  • fixing bugs and other issues
  • managing pull requests and do code reviewing
  • mentoring new contributors
  • translating QGIS
  • running our QGIS grant system that allows contributors to work on behind the scenes improvements to the QGIS code base, our infrastructure, documentation or other aspects of our community. Work that otherwise would be hard to do by volunteers only or hard to sell to customers of QGIS development companies
  • organize and support our contributor meetings and QGIS conferences

QGIS.ORG wants to be transparent with the funds we receive and how we spend them. Please have a look at the financial reports and budgets in our Finance section.”

Adding Open Source to your Geography Curriculum

We’re planning a webinar to help train educators to add open source GIS to their curriculum. In this post, I introduce the general idea and share some of the topics we’ll discuss.


In the 90s, many schools were lucky if they had any GIS in their geography eduction. My geography program didn’t offer it, but I could learn PC Arc/Info through the Forestry department. A lot has changed since that time when PC software was just taking off.

In the decade that followed, I used HP UNIX Arc/Info before our company tried to use ArcView and finally landed on ArcMap for Windows. However, I’m sure the company today would be trying to integrate more open source GIS tools that analysts picked up on their own. The most valued professionals can learn what they need and bring that value to their work or businesses regardless of education. How, then, should institutions be helping to increase the value of their students in a similar way.

Many universities and colleges treat GIS training as a technical skill that will help them get a job. While this is certainly true, the dependency on using a single product that students will not have free access to in the future has made it difficult for some academics to feel comfortable with this approach. It’s a huge business and many marketing dollars are spent to continue this approach. Incidentally, that’s fine with us, it’s a big market and we serve a growing group of professionals that are well beyond ‘niche’ status.

Regardless, there has been a continual and increasing push for decades toward using more open software solutions, including open source GIS, in education.

Spreading the word

We started OSGeo to help spread these tools around the world, developing local user groups to support peer groups who weren’t familiar with the options they had. However, it was much more than just a marketing effort, professors and teachers needed solid training material to use in their courses. They weren’t familiar with the options either and it is extremely time consuming to make dramatic changes to an existing GIS course. We helped them find their peers and learn new tools.

This is also why we started Locate Press – to produce material to help courses and trainers teach an open source software approach. Half of our books are geared toward educational users and are designed as workbooks and guides that are used in colleges and universities.

So, if the books, software, and international support groups exist, why isn’t everyone learning, say, QGIS at university?

Because there are several other challenges that make it hard to adapt to these new approaches.

How to add open source GIS to courses

Rather than gloss over those issues in this post, we will dig into them through a webinar instead.

The 90 minute event will cover case studies from teachers who integrated open source GIS training approaches. Our roundtable of speakers will share their varied approaches to making their courses successful. We will identify the issues that remain and need to be addressed going forward. We will discuss what makes a good GIS course in general as well. Here is a rough outline of the topics we are planning to cover:

  • Top 5 challenges to adding open source to a GIS training program
  • Who is already using open source GIS in their curriculum?
  • Why is it difficult to adapt to today’s educational climate?
  • How did our panelists make the switch?
  • What standards/curriculums need to be addressed by any course?
  • What materials are hardest to find and need more focus?
  • How can cross-product integration help students get the best of both worlds?
  • How can this tie in to certification efforts, like, GISP?
  • How can we keep extending the reach of new teaching options?

What questions are we missing? Let us know @locatepress. Or use the Q&A channel the we will have open throughout the webinar.

We hope this will be valuable to any trainer, educator, or professor who has the challenge of leveling the playing field while providing optimal training for their students.

More information is to come. If you want to be informed about the webinar (and our other initiatives), please subscribe to our mailing list and select the “Education” interest checkbox. More information will be shared there when things are finalized.

Further Reading

Here are some of our books that are used in university courses around the world.

%d bloggers like this: